硬件層面,也就是所謂的硬件加速, CPU、GPU、FPGA、ASIC。CPU與GPU相比在大數(shù)據(jù)多任務處理上,肯定GPU更占優(yōu)勢。FPGA與GPU相比,在兼顧了靈活性的基礎(chǔ)上,無論是計算能力和功耗性能上都要更強,缺點是性價比太低。ASIC是的,其他的硬件形態(tài)都是無法比擬的。
綜上來看,內(nèi)存和帶寬是限制證明生成的主要瓶頸。對于顯卡來說,這里的內(nèi)存指的是顯存,并不是主板上的內(nèi)存,主板上的內(nèi)存主要是參與CPU的計算。當然目前有些芯片技術(shù)可以打通主板上的內(nèi)存和顯存,讓內(nèi)存為顯存計算來用。
在分析之前,我們先看一下ASIC(Application Specific Integrated Circuit),中文全稱是“專用集成電路”。這里特別強調(diào)“專用”,“專用”意味著針對單一項目來說會更加有競爭力。相對比,GPU(顯卡)是通用計算處理芯片,所以在單一項目上來說“專用”肯定比“通用”更有競爭力。
早在2021年,英偉達就曾公開表示過“禁止使用轉(zhuǎn)換層在其他硬件平臺上運行基于CUDA的軟件”,2024年3月,英偉達更是將其升級為“CUDA禁令”,直接添加在了CUDA的終用戶許可協(xié)議中,已禁止用轉(zhuǎn)譯層在其他GPU上運行CUDA軟件