硬件層面,也就是所謂的硬件加速, CPU、GPU、FPGA、ASIC。CPU與GPU相比在大數(shù)據(jù)多任務(wù)處理上,肯定GPU更占優(yōu)勢。FPGA與GPU相比,在兼顧了靈活性的基礎(chǔ)上,無論是計算能力和功耗性能上都要更強,缺點是性價比太低。ASIC是的,其他的硬件形態(tài)都是無法比擬的。
雖然PoW的周期是10年,不代表說10年后ASIC就不需要了,只要隱私委托代理計算方案還存在,那么ASIC其實是一直需要的。
總結(jié),從算法、定位和共識三個方面綜合來看,Aleo都和以往的其他公鏈項目有本質(zhì)上的差別,而ASIC對于Aleo來說是必需的硬件設(shè)備,就好比專用顯卡/芯片對于AI大模型訓練是一樣的道理,所以官方明確表態(tài)支持ASIC也在情理之中,而且無論從Token價格、內(nèi)存、帶寬、成本、回本周期等因素長期來看,ASIC都是選擇。
芯片的硬件指的是運行指令的物理平臺,包括處理器、內(nèi)存、存儲設(shè)備等等。芯片數(shù)據(jù)中常出現(xiàn)的“晶體管數(shù)量”、“7nm制程”、“存儲”等,往往指的就是硬件參數(shù)。
軟件則包括固件、驅(qū)動程序、操作系統(tǒng)、應(yīng)用程序、算子、編譯器和開發(fā)工具、模型優(yōu)化和部署工具、應(yīng)用生態(tài)等等。這些軟件指導(dǎo)硬件如何響應(yīng)用戶指令、處理數(shù)據(jù)和任務(wù),同時通過特定的算法和策略優(yōu)化硬件資源的使用。芯片數(shù)據(jù)中常出現(xiàn)的“x86指令集”、“深度學習算子”、“CUDA平臺”等,往往指的就是芯片軟件。
早在2021年,英偉達就曾公開表示過“禁止使用轉(zhuǎn)換層在其他硬件平臺上運行基于CUDA的軟件”,2024年3月,英偉達更是將其升級為“CUDA禁令”,直接添加在了CUDA的終用戶許可協(xié)議中,已禁止用轉(zhuǎn)譯層在其他GPU上運行CUDA軟件