在分析之前,我們先看一下ASIC(Application Specific Integrated Circuit),中文全稱是“專用集成電路”。這里特別強調“專用”,“專用”意味著針對單一項目來說會更加有競爭力。相對比,GPU(顯卡)是通用計算處理芯片,所以在單一項目上來說“專用”肯定比“通用”更有競爭力。
●在算法過程中頻繁的數(shù)據混洗使得NTT難以在計算集群中分布,無法并行計算,并且由于需要從大型數(shù)據集中加載和卸載數(shù)據,在硬件上運行時需要大量帶寬。即使硬件操作很快,這可能也會導致速度變慢。例如,如果硬件芯片的內存為16GB或更少,那么在100GB的數(shù)據集上運行NTT將需要通過網絡加載和卸載數(shù)據,這可能會大大降低操作速度。
目前零知識證明(ZKP)應用的主要2個方向:隱私和可驗證計算,Aleo是隱私L1公鏈,同時兼具可編程性,像ZCash等雖然也是隱私公鏈,但是不具備可編程性。以太坊L2上的ZK-Rollup項目,屬于可驗證計算,我們之前的文章也分析過:重磅分析!為什么說FPGA或者ZK通用服務器在Aleo項目上機會是零?,在證明的需求量上完全不是一個級別。
早在2021年,英偉達就曾公開表示過“禁止使用轉換層在其他硬件平臺上運行基于CUDA的軟件”,2024年3月,英偉達更是將其升級為“CUDA禁令”,直接添加在了CUDA的終用戶許可協(xié)議中,已禁止用轉譯層在其他GPU上運行CUDA軟件