最大胆的大胆西西人艺人术_欧美在线看片a免费观看_欧美人与动人物a级_国产欧美日韩va另类在线播放

    當前位置 > 首頁 >詳細頁面
    聯(lián)系我們

    地址:蘭州市

    聯(lián)系:徐紀氫

    手機:

    蘭州市8卡GPU服務器生產(chǎn)廠家,享受的隱私保護

    2025-04-08 10:00:02 248次瀏覽
    價 格:面議

    硬件層面,也就是所謂的硬件加速, CPU、GPU、FPGA、ASIC。CPU與GPU相比在大數(shù)據(jù)多任務處理上,肯定GPU更占優(yōu)勢。FPGA與GPU相比,在兼顧了靈活性的基礎上,無論是計算能力和功耗性能上都要更強,缺點是性價比太低。ASIC是的,其他的硬件形態(tài)都是無法比擬的。

    證明生成的過程中,約有60%的時間花在MSM上,其余時間由NTT/FTT主導。MSM和NTT都存在性能挑戰(zhàn),通常的解決辦法:

    ●MSM可以在多線程上執(zhí)行,從而支持并行處理。然而,當處理大型數(shù)據(jù)向量時,例如6700萬個參數(shù),乘法運算可能仍然很慢,并且需要大量的內存資源。此外,MSM存在可擴展性方面的挑戰(zhàn),即使在廣泛并行化的情況下也可能保持緩慢。

    ●在算法過程中頻繁的數(shù)據(jù)混洗使得NTT難以在計算集群中分布,無法并行計算,并且由于需要從大型數(shù)據(jù)集中加載和卸載數(shù)據(jù),在硬件上運行時需要大量帶寬。即使硬件操作很快,這可能也會導致速度變慢。例如,如果硬件芯片的內存為16GB或更少,那么在100GB的數(shù)據(jù)集上運行NTT將需要通過網(wǎng)絡加載和卸載數(shù)據(jù),這可能會大大降低操作速度。

    按照官方的設想和規(guī)劃未來在Aleo上每天的交易量都是上億美金的規(guī)模,在這樣大數(shù)據(jù)量的要求下,每時每刻都有證明需要被委托出去在極短的時間內完成證明的生產(chǎn),不可能指望顯卡能解決這個問題。就像AI大模型訓練一樣,早期數(shù)據(jù)量和參數(shù)少的情況下可以用消費級顯卡,但是現(xiàn)在更多的都是為AI訓練設計的專用芯片和機器。

    網(wǎng)友評論
    0條評論 0人參與
    最新評論
    • 暫無評論,沙發(fā)等著你!
    被瀏覽過 1004112 次     店鋪編號:35226536     網(wǎng)店登錄     免費注冊     技術支持:百業(yè)網(wǎng)     徐紀氫    

    1

    回到頂部