硬件層面,也就是所謂的硬件加速, CPU、GPU、FPGA、ASIC。CPU與GPU相比在大數(shù)據(jù)多任務處理上,肯定GPU更占優(yōu)勢。FPGA與GPU相比,在兼顧了靈活性的基礎上,無論是計算能力和功耗性能上都要更強,缺點是性價比太低。ASIC是的,其他的硬件形態(tài)都是無法比擬的。
證明生成的過程中,約有60%的時間花在MSM上,其余時間由NTT/FTT主導。MSM和NTT都存在性能挑戰(zhàn),通常的解決辦法:
●MSM可以在多線程上執(zhí)行,從而支持并行處理。然而,當處理大型數(shù)據(jù)向量時,例如6700萬個參數(shù),乘法運算可能仍然很慢,并且需要大量的內(nèi)存資源。此外,MSM存在可擴展性方面的挑戰(zhàn),即使在廣泛并行化的情況下也可能保持緩慢。
簡單來說,在其他參數(shù)相同或者差不多的情況下,內(nèi)存和帶寬綜合決定終某個硬件在Aleo項目上的算力大小。
帶寬這個概念估計很多人不是很了解,之前只是關注顯存,雖然說目前Aleo官方還沒有正式公布的PoSW算法,但是從目前的表述來看把NTT/FFT這個漏洞堵上是個必然,而且本身零知識證明算法是對NTT/FFT有要求的。
為了打破英偉達一家獨大的局面,前任全球芯片老大英特爾和多年老對手AMD對標CUDA都分別推出了OneAPI和ROCm,Linux基金會更是聯(lián)合英特爾、谷歌、高通、ARM、三星等公司聯(lián)合成立了民間號稱“反CUDA聯(lián)盟”的UXL基金會,以開發(fā)全新的開源軟件套件,讓AI開發(fā)者能夠在基金會成員的任何芯片上進行編程,試圖讓其取代CUDA,成為AI開發(fā)者的開發(fā)平臺。