硬件層面,也就是所謂的硬件加速, CPU、GPU、FPGA、ASIC。CPU與GPU相比在大數(shù)據(jù)多任務(wù)處理上,肯定GPU更占優(yōu)勢(shì)。FPGA與GPU相比,在兼顧了靈活性的基礎(chǔ)上,無論是計(jì)算能力和功耗性能上都要更強(qiáng),缺點(diǎn)是性價(jià)比太低。ASIC是的,其他的硬件形態(tài)都是無法比擬的。
證明生成的過程中,約有60%的時(shí)間花在MSM上,其余時(shí)間由NTT/FTT主導(dǎo)。MSM和NTT都存在性能挑戰(zhàn),通常的解決辦法:
●MSM可以在多線程上執(zhí)行,從而支持并行處理。然而,當(dāng)處理大型數(shù)據(jù)向量時(shí),例如6700萬個(gè)參數(shù),乘法運(yùn)算可能仍然很慢,并且需要大量的內(nèi)存資源。此外,MSM存在可擴(kuò)展性方面的挑戰(zhàn),即使在廣泛并行化的情況下也可能保持緩慢。
●在算法過程中頻繁的數(shù)據(jù)混洗使得NTT難以在計(jì)算集群中分布,無法并行計(jì)算,并且由于需要從大型數(shù)據(jù)集中加載和卸載數(shù)據(jù),在硬件上運(yùn)行時(shí)需要大量帶寬。即使硬件操作很快,這可能也會(huì)導(dǎo)致速度變慢。例如,如果硬件芯片的內(nèi)存為16GB或更少,那么在100GB的數(shù)據(jù)集上運(yùn)行NTT將需要通過網(wǎng)絡(luò)加載和卸載數(shù)據(jù),這可能會(huì)大大降低操作速度。
綜上來看,內(nèi)存和帶寬是限制證明生成的主要瓶頸。對(duì)于顯卡來說,這里的內(nèi)存指的是顯存,并不是主板上的內(nèi)存,主板上的內(nèi)存主要是參與CPU的計(jì)算。當(dāng)然目前有些芯片技術(shù)可以打通主板上的內(nèi)存和顯存,讓內(nèi)存為顯存計(jì)算來用。